Protective effects of ursolic acid and luteolin against oxidative DNA damage include enhancement of DNA repair in Caco-2 cells.

نویسندگان

  • Alice A Ramos
  • Cristina Pereira-Wilson
  • Andrew R Collins
چکیده

Consumption of fruits and vegetables is associated with a reduced risk of developing a wide range of cancers including colon cancer. In this study, we evaluated the effects of two compounds present in fruits and vegetables, ursolic acid, a triterpenoid, and luteolin, a flavonoid, on DNA protection and DNA repair in Caco-2 cells using the comet assay. Ursolic acid and luteolin showed a protective effect against H(2)O(2)-induced DNA damage. Repair rate (rejoining of strand breaks) after treatment with H(2)O(2) was increased by pre-treatment of Caco-2 cells for 24h with ursolic acid or luteolin. To evaluate effects on induction of base oxidation, we exposed cells to the photosensitizer Ro 19-8022 plus visible light to induce 8-oxoguanine. Luteolin protected against this damage in Caco-2 cells after a short period of incubation. We also measured the incision activity of a cell extract from Caco-2 cells treated for 24h with test compounds, on a DNA substrate containing specific damage (8-oxoGua), to evaluate effects on base excision repair activity. Preincubation for 24h with ursolic acid enhanced incision activity in Caco-2 cells. In conclusion, we demonstrated for the first time that ursolic acid and luteolin not only protect DNA from oxidative damage but also increase repair activity in Caco-2 cells. These effects of ursolic acid and luteolin may contribute to their anti-carcinogenic effects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluating the effects of galbanic acid on hydrogen peroxide-induced oxidative DNA damage in human lymphocytes

Objective: Ferula szowitsiana has been widely used for medicinal purposes around the world. The anti-oxidant effect of F.szowitsiana had been proved. The current study aims to determine the protective effects of galbanic acid, a sesquiterpene coumarin from F. szowitsiana, against hydrogen peroxide (H2O2) - induced oxidative DNA damage in human lymphocytes. Materials and Methods: Human lymphocyt...

متن کامل

Oxidative DNA damage protection and repair by polyphenolic compounds in PC12 cells.

Biological systems are frequently exposed to excessive reactive oxygen species, causing a disturbance in the cells natural antioxidant defence systems and resulting in damage to all biomolecules, including nucleic acids. In fact, oxidative DNA damage is described as the type of damage most likely to occur in neuronal cells. In this study, three polyphenolic compounds, luteolin, quercetin and ro...

متن کامل

OGG1 DNA Repair Gene Polymorphism As a Biomarker of Oxidative and Genotoxic DNA Damage

Background: Single nucleotide polymorphisms in 8-oxoguanine DNA glycosylase-1 (OGG1) gene modulates DNA repair capacity and functions as one of the first lines of protective mechanisms against 8-hydroxy-2’-deoxyguanosine (8-OHdG) mutagenicity. OGG1-Cys326 gene polymorphism may decrease DNA repair function, causing oxidative stress due to higher oxidative DNA damage. The main purpose of this stu...

متن کامل

Phenolic compounds protect HepG2 cells from oxidative damage: relevance of glutathione levels.

In the present work, the potential hepatoprotective effects of five phenolic compounds against oxidative damages induced by tert-butyl hydroperoxide (t-BHP) were evaluated in HepG2 cells in order to relate in vitro antioxidant activity with cytoprotective effects. t-BHP induced considerable cell damage in HepG2 cells as shown by significant LDH leakage, increased lipid peroxidation, DNA damage ...

متن کامل

Protective effect of Nigella sativa and thymoquinone on serum/glucose deprivation-induced DNA damage in PC12 cells

Objective: The discovery and development of natural products with potent antioxidant properties has been one of the most interesting and promising approaches in the search for treatment of CNS injuries. The most significant consequence of the oxidative stress is thought to be the DNA modifications, which can become permanent via the formation of mutations and other types of genomic instability ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mutation research

دوره 692 1-2  شماره 

صفحات  -

تاریخ انتشار 2010